

Technical Orientation Meeting

09 June 2009

Ground Rules and Procurement Communication Process

Dave Downs | Design Build Manager

Ground Rules for Questions

- 1. The Final RFP rules
- 2. No questions relative to procurement or the RFP during presentation
- 3. Follow the communication protocol for technical or informational questions

Transfer of Information

- Password protected web-sharing site
- Security
 - User name and password with both read and write privileges
 - User name and password with read only privilege

Technical Orientation and Project Overview

Dan Dixon | Design Services Manager

Morning Schedule

Design Presentation – Technical Team

Break

Design Presentation cont. – Technical Team

Questions and Answers – David Downs

Lunch

Afternoon Schedule

Welcome - Dal Hawks

Ground Rules – David Downs

Utilities Presentation – Rod Brocious and Kevin Francis

Third Parties Introductions – Rod Brocious

Questions and Answers – David Downs

I-15 CORE Technical Team

- Merrell Jolley Engineering Director
- Dan Dixon Design Manager
 - Roadway: Brian Atkinson, Laren Livingston
 - Signing: Laren Livingston
 - Traffic: Luis Porrello, Rob Clayton
 - Environmental: Derek Hamilton
 - Drainage: Jonathan Clegg
 - Structures: Larry Reasch

I-15 CORE Technical Team cont.

- Dan Dixon Design Manager
 - Geotechnical: Brad Price
 - ATMS and ETC: David Jones
 - Aesthetics and Landscaping: Brian Elrod
 - Third Parties: Rod Brocious, Kevin Francis
 - Public Involvement: David Smith
 - Concurrent Projects: Shane Marshall

Ultimate Infrastructure Configuration – Concept

- Develop conceptual design consistent with FEIS ROD and 404 Permit commitments
- Establish ROW and prioritize acquisition
- Identify and address risks and opportunities
 - Utilities, Drainage, Geotechnical, Environmental
- Additional commitments and agreements required to progress the project
- Conceptual Design depicted in Informational Documents is one approach

Ultimate Infrastructure Configuration – Concept

3D Immersive Tool

Preconstruction Surveys

- Coordinated with OCIP management
- Property owner authorization
- Documentation shared with property owner
- Confirmation prior to beginning construction in vicinity
- Web based access

Roadway Design

Brian Atkinson | Roadway Design Manager Laren Livingston | Roadway Design Manager

Survey and Mapping

- Risks mitigated from FEIS
 - Aerial mapping was supplemented with field surveys
 - Inroads DTMs updated with field surveys
 - Updated DTMs meet mapping standards for 1 ft contours

I-15 Mainline Typical Section

- Risks Mitigated from FEIS
 - 11 ft Express Lanes and General Purpose (GP) Lanes
 - 4 ft buffer between Express Lanes and GP
 - American Fork Main to University Avenue approach to UIC
 - Minimum span lengths at city crossings
- Risks not yet addressed
 - Hydroplaning/pivot point

Maintenance Issues

- Risks identified from meeting with Region maintenance group
 - Snow storage and sign placement at noise walls
 - Provided 5 ft from back of barrier to noise wall
 - 10 ft wide access and maintenance area in front of walls
 - Settlement at MSE walls (single vs. two stage)

NOISEWALL TREATMENTS

MSE WALL TREATMENTS

Design

- Known design exceptions
 - 11 ft Express Lanes and GP 1 approved
 - Inside shoulder for median appurtenances approved
 - Vertical clearances at under crossings pending
- Design and ROW approach
 - ROW acquired based on RFP design
 - Maintenance and access issues addressed
 - Design files provided
- Ramp metering

SPUI Requirements

- 10 ft separation between opposing movements
- 2:1 maximum ratio on compound curves
- Lanes accommodate WB-67 turning movements

DDI Requirements

- 30°crossing angle
- 10 mph reduction in design speed
- 8 ft outside and 4 ft inside shoulder minimums
- Signalized intersections
- 600 ft spacing between signals
- Visual screening requirements

Segment Description

- Segment 4 American Fork Main to 800 North
- Segment 3 Orem Center
- Segment 2 University Parkway to Provo Center
- Segment 1 Provo 600 South to UPRR crossing
- South of Segment 1 U.S. 6 and Spanish Fork Main

Segment 4 – Northern Termini

- Pioneer Crossing
- Smooth transition from 7 lanes to 4 existing lanes
- Eliminate queing onto mainline
- LOS D at interchange

Segment 4 – American Fork Bicentennial Park

Segment 4 – 500 East

Segment 4 – Pleasant Grove Boulevard

Segment 4 – 1600 North

Segment 4 – 800 North

Segment 3 – Orem Center

Segment 2 – University Parkway to Provo Center

- University Parkway
- S-Curves at UPRR and UTA crossings
 - Provo 820 North
- Provo Center

Segment 2 – University Parkway

- Maintain existing SPUI
 - Add triple southbound to eastbound and westbound to southbound ramps
- Capacity of Sandhill Road intersection
 - FEIS design: tunnel and flyover
 - Conceptual design: Full grade separation at Sandhill Road

Segment 2 – University Parkway

Segment 2 – University Parkway

Segment 2 – S-Curves at Railroad Crossings

Segment 2 – Provo Center

Segment 2 – Provo Center

Segment 1 – Provo 600 South to UPRR Crossing

- Provo 500 West
- University Avenue
- Widening south of University Avenue
- Southern Terminus
 - Lane drop at interchange vs. inside lane taper

Segment 1 – 500 West

Segment 1 – University Avenue

Segment 1 – South Mainline Typical

Segment 1 – Southern Terminus

South of Segment 1 – U.S. 6 and Spanish Fork Main Street

Additional data and conceptual design information available

Signing

Laren Livingston | Roadway Design Manager

Signing

- Information to be provided by UDOT
 - Destination names
 - Supplemental signs
 - Standard is 2003 MUTCD
 - Select 2009 MUTCD requirements
 - Sign plans shall be submitted for approval

Traffic and MOT

Luis Porrello | Traffic and MOT Manager Rob Clayton | Traffic and MOT Manager

Traffic Analysis

- The role of traffic analysis is to understand:
 - Current and future traffic demand through the corridor
 - The impact of I-15 construction and proposed improvements on regional mobility
 - The interactions between interchanges and mainline
- Analysis tools
 - Gain understanding
 - Evaluate ideas

Interchange Concepts

- Emphasis on interaction with:
 - I-15 Mainline
 - Cross streets and the local roadway network
 - Adjacent interchanges
- If a proposed interchange type differs from the approved Access Justification Report (AJR), a revised AJR is needed
 - Not a big deal

Traffic Analysis Tools

Platform and model summary

Traffic Analysis Type	Required Platform	Use of Models Provided
Travel Demand Forecasting	CUBE	Required – Part 6 Limited modifications
Macro-scale Simulation	Quadstone Paramics	Required – Part 6 Limited modifications
Microsimulation	VISSIM	Not required – Informational only
Traffic Signal Optimization	Synchro	Not required – Informational only
Highway Capacity Analysis	HCS	Not required – Informational only

Travel Demand Forecasting

- Platform: CUBE 5, WFRC/MAG model v 6.0
- Why did we use it?
 - Recognized by MAG
- How is it used?
 - Develop I-15 CORE-specific TDM
 - Forecast corridor volumes
 - Develop intersection turning movements
 - Develop subarea trip tables for Paramics
 - Screen and evaluate MOT concepts
- Additional notes
 - MAG concurrence with model provided
 - Emphasis on Medium Districts 26-31 for assessment

Macro-scale Simulation

- Platform: Quadstone Paramics v6.5.3
- Why did we use it?
 - Closer look at corridor and surrounding network in the peak hours
 - Incorporates the effects of signal operations
- How is it used?
 - Examination of MOT strategies to determine impacts on mainline and alternative routes
- Additional notes
 - Efficient evaluation of alternatives for regional traffic operations

Microsimulation

- Platform: VISSIM v5.10-07
- Why did we use it?
 - Accepted by UDOT; flexible application
- How is it used?
 - Evaluation of interchange types at key locations
 - Ramp metering analysis
 - Northern and southern terminus analysis
 - Ramp junction and ramp terminal analysis
- Additional notes
 - Several models provided with RFP for information only
 - VISSIM required for analysis of interchanges

Traffic Signal Optimization

- Platform: Synchro v7
- Why did we use it?
 - Accepted by UDOT; ease of use
- How is it used?
 - Design and interim year signal optimization and coordination
 - Intersection analysis
 - Initial queuing analysis
- Additional notes
 - County-wide Synchro file provided as information

Highway Capacity Analysis

- Platform: HCS+ v5.21
- Why did we use it?
 - Wide acceptance; ease of use
- How is it used?
 - Analysis of mainline, ramp junctions, auxiliary lanes, and weaving sections
- Additional notes
 - HCS files provided with RFP for AJR study area

Traffic Management Plan

- Implementation of traffic management strategies directly impacts regional mobility
- Measurement of regional mobility will include the following measures from Paramics:
 - Delay
 - Vehicle miles traveled
 - Vehicle hours traveled
 - Travel times / average speed
- How to apply these and other proposed measures will be the subject of discussion with teams

Traffic Management Plan cont.

 Example: Quantitative measure of Regional Mobility by phase and over the Project Life

Traffic Management Plan cont.

- Limitations for:
 - Mainline lane closures by time of day, day of week
 - Mainline lane closures for holidays and special events
 - Closure of consecutive ramps and combinations of cross streets
- Management of traffic signal operations
 - DB operators functioning at UDOT TOC
- Coordination with I-15 CORE Public Information
 Team significant part of TMP

Environmental

Derek Hamilton | Environmental Manager

RFP Development Approach

- Project commitments
 - Permits, authorizations, assessments, and documents
- Identify Responsible Party and implementation periods
- Provide "resource" exhibits
- Clarify Department expectations
- Identify compliance measures
 - Qualifications
 - Training
 - Reporting

Project Area Resources

- Natural Environment
 - Wetlands
 - Plant and Wildlife
 - June sucker
 - Ute-ladies'-tresses
- Human Environment
 - Social (relocations, noise, aesthetics, construction)
 - Cultural
 - Historic Homes
 - Parks

Wetlands

- U.S. Army Corps of Engineers 404 Permit
 - Authorizes 39.64 acres for permanent features associated with the EIS design between Main Street in Lehi and U.S. 6 in Spanish Fork
 - Wetland delineated boundary and permitted wetlands are identified in the Environmental Plan Sheets
- Conceptual Design
 - Modification to 404 permit shall be obtained based on final design and change in impacts
 - Hobble Creek fish passage condition
- Schedule of wetland impacts
 - One year notice (wetlands south of bank service area)

Threatened and Endangered Species

- June sucker (Chasmistes liorus)
 - Provo River, Spanish Fork River,
 Hobble Creek
 - Construction activities shall occur during the non-spawning period
 - Non-spawning period: August1 to March 31
 - Biological Assessment construction conditions

Threatened and Endangered Species

- Ute ladies'-tresses (Spiranthes diluvialis)
 - Annual surveys shall be conducted in suitable habitat as requested by USFWS
 - Surveys shall be conducted in July or August
 - Survey to be conducted by the Department in 2009 (results to be disclosed)

Migratory Birds

- Surveys shall be conducted annually in areas that require tree and shrub removal which will occur during the nesting season
- Migratory bird nesting season: May 1 to August 31

Migratory Birds – Raptors

Raptors

- Raptor nest surveys shall be conducted annually where construction will occur during the nesting season
- Raptor nesting season: identified by species
- USFWS Utah Field Office
 Guidelines for Raptor
 Protection from Human
 and Land Use Disturbances

Migratory Birds – Swallows

Swallows

- Nests shall be removed, prior to nesting, from existing bridges planned for reconstruction during the swallow nesting period
- Swallow Nesting Period: May 1 to July 31
- Deterrence devices shall be employed

Hazardous Materials

- UST/LUST and Phase 2 sites identified in Informational Environmental Plan Sheets
- Document the location of all re-used industrial byproduct (slag)
- Industrial byproduct shall not remain exposed or at the final ground surface

Cultural Resources

- Determination of Eligiblity/Finding of Effect
- Eligible properties identified in DOE; impacts identified in FOE
- Eligible and ineligible properties identified in the Environmental Plan Sheets and DOE
- Changes in eligibility or effect shall be submitted to the Department for SHPO concurrence
- Additional impact to eligible properties may trigger revisiting environmental documentation

Noise Walls

- All areas identified that qualify in accordance with UDOT Noise Abatement Policy
- Selected balloting to be conducted by the Department during Summer 2009 (Results to be disclosed)
- Noise wall dimensions and locations, which are proposed as a result of new design, shall be submitted to and approved by the Department
- Bicentennial Park

Compliance

- Environmental Protection Personnel
 - Environmental Control Supervisor (ECS)
 - Archaeologist
 - Wetland Specialist
 - Fisheries Biologist
- Environmental Protection Training
 - Permit conditions and commitments
 - Species and wetland identification
 - Demonstrate success (verification)
- Monitoring Reports
 - Violations, discovery, agency involvement

Drainage

Jonathan Clegg | Drainage Design Manager

Overview

- Local Coordination
- Onsite Drainage
- Offsite Drainage
- Agreements
- Select design requirements

Local Coordination

- Connection to local systems by agreement only
 - Connection criteria in RFP and Utility Agreements
- Meeting notes in Informational Document section
 - Provide background and context
- DB to verify location, ownership, size, material, condition, etc.
 - First get familiar with information that is already provided
 - Meet with local entities

Onsite Runoff

Detention

- Post-Project peak releases ≤ Pre-Project peak releases for the full range of recurrence intervals thru design event
- Total capacity of receiving systems cannot be exceeded without proper easements, permissions or improvements
- Agreed on maximum release rates (Table 3C-3)
- Right-of-way acquisition underway. To be done by I-15 CORE Team
- Pond maintenance access

Onsite Runoff cont.

DETENTION BASIN RELEASE RATE CRITERIA

Jurisdiction	Detention Basin Release Rate
Springville City, Springville Irrigation Company, and Springville Drainage District	All discharges shall not exceed 0.15 cfs per acre for the 10-year, 24-hour event.
Provo City	All discharges shall not exceed 0.2 cfs per acre for the 10-year, 24-hour event.
Orem City	All discharges shall not exceed 60 gpm per acre for the 25-year, 24-hour event.
Lindon City, Pleasant Grove City, American Fork City	Lesser of pre-project, channel capacity, or 0.2 cfs per acre for the 10-year, 24-hour event.

Onsite Runoff cont.

Discharges

- Co-mingle Project and non-Project storm drain flows only downstream of Project
- Exceptions by agreement only
- Provo City at Center Street
- Orem City

Onsite Runoff cont.

- Not allowed on Project
 - Storm drain lift stations
 - Retention ponds
 - Underground storage
 - Slot drains
- Pipe Sizes
 - Trunk line and laterals not hydraulically sized
 - Minimum pipe size is 18 in. for collection system

Offsite Surface Water cont.

- Replace vs. extend
 - Existing cross drain pipes and culverts: replace in reconstruct areas, extend in widening areas
 - Minimum cross drain pipe culvert size is 24 in.
 - Onsite vs. offsite culverts
- Design Criteria
 - Design Q and headwater elevation (Table 3C-2)
- Some of existing cross drainage is via slag

Offsite Surface Water cont.

DESIGN FLOW CRITERIA FOR RIVERS, STREAMS, CANALS, AND CROSS DRAINAGES

Location	Design Flow	Status
Dry Creek	550 cfs	Extend
Packard Drain	300 cfs	Extend
Hobble Creek	N/A	Shall not be replaced or modified.
Spring Creek	200 cfs	Extend
East Bay	1,300 cfs total combined all locations	Extend
Provo River	3,200 cfs with maximum upstream water surface elevation of 4532.4 NAVD88	Replace
American Fork River	2,440 cfs with maximum upstream water surface elevation of 4,570.0 NAVD88	Replace
Lake Bottom Irrigation Canal	Match existing capacity and geometry	Extend
West Union Canal	Match existing capacity and geometry	Replace
All other natural or storm drain crossings	50-year, 24-hour storm event	Replace
All other canal or irrigation crossings	Existing capacity and functionality as determined by coordination with owner unless modified by agreement.	Replace

Groundwater

- Maintain and preserve functionality and capacity
- Land drains
 - Springville Drainage District
- Groundwater drains
 - Orem City, Lake Bottom Irrigation Company, Verl Cook Nursery
- Well abandonment
 - Per Utah Division of Water Rights procedures

Irrigation

- Limited Construction Window
 - November 1 to March 31
 - See Table 3C-2 for design capacities

Selected Design Information

- 50-year design life for all drainage and irrigation facilities
- Use of trench drains
- Drainage Report
 - Informational Document section
 - One per design segment plus corridor summary

Structures

Larry Reasch

Seismic Design Criteria

- AASHTO Guide Specification for LRFD Seismic Bridge Design
 - Return period varies based on bridge definition
- Seismic Response defined for three bridge types
 - Critical
 - Essential
 - Non-critical/Non-essential

- Bridge type definition
 - Critical Bridges
 - "Operational with little or no damage after the design seismic event."
 - Return Period 7% in 75 years
 - Check collapse for Return Period 3% in 75 years

- Bridge type definition
 - Essential Bridges

"Bridges that must remain open to emergency traffic immediately after a seismic event and must be repairable after the design seismic event, and non-conventional bridges as defined by C3.1 of the Guide Specification."

- Return Period 3% in 75 years
- Check collapse for Return Period 3% in 75 years

- Bridge type definition
 - Non-critical/Non-essential"All non-critical and non-essential bridges."
 - Return period 7% in 75 years

- Retaining walls
 - Retaining wall seismic criteria will have similar criteria as the bridge near the wall

Accelerated Bridge Construction

Not mandated, but available as a tool for accelerated construction

Geotechnical

Brad Price | Geotechnical Design Manager

Geotechnical

Geologic Map

- Surficial Geologic Map of the Wasatch Fault Zone – Eastern Part of Utah Valley, Utah County and Parts of Salt Lake and Juab Counties, Utah (Machette, 1992)
- Wasatch Fault Zone –
 Provo Segment
 - Mapped within 2 to 4 miles of Corridor

Overview of Surficial Deposits

- Lacustrine (Bonneville) Silt and Clay
 - American Fork through
 Lindon, parts of North
 Provo, Springville, and
 Spanish Fork
- Lacustrine (Bonneville) Sand
 - Orem, parts of North Provo,
 Spanish Fork U.S. 6
- Stream and Fan Alluvium
 - American Fork River, Provo River Areas (including Center Street)

Overview of Surficial Deposits cont.

- Younger Lake and Marsh Deposits
 - South Provo, some
 locations in Pleasant
 Grove, Lindon,
 Springville/Spanish Fork
- Deltaic Deposits east of I-15 in Orem, North Provo
- Lateral Spread Deposits near
 U.S. 6 in Spanish Fork

Liquefaction Potential

 Liquefaction Special Study Areas, Wasatch Front and Nearby Areas, Utah (Christenson and Shaw, 2008)

Existing Bridge Foundations

Most Bridges on Piles

Original bridges typically used two rows of abutment piles, with front row battered

Spread Footings

- Provo Center Street Area (River to 900 South)
- Orem 1600 North,800 North, Center Street
- American Fork 300 West

Geotechnical Information Provided

- Previous Geotechnical Investigations
 - Original Construction
 - Recent Projects: University Avenue, University Parkway,
 Pleasant Grove Interchange, Springville (SR-75, SR-77),
 2005 Median Widening (Lehi-Orem), American Fork Main
- Geotechnical Information from Previous Construction
 - Settlement, Piezometers
 - Pile Driving Logs, PDA Tests

Geotechnical Data Provided

- Engineering Data: I-15 CORE Geotechnical Investigations (Part 6)
 - 115 pavement borings in Mainline (avg. 10 per mile)
 - Generally 2 CPT holes and 2 borings with lab testing for each bridge reconstruction site (26 sites)
 - 36 borings with lab testing for embankments/walls between bridge sites
 - Pavement borings for ramps and cross streets
 - Some shallow holes and permeability tests at potential detention basin locations

Risks and Opportunities

- Pavement
 - Opportunity to incorporate existing pavement
- Settlement
 - Areas of varying susceptibility (see records)
 - Mitigation methods may vary by location
- Stability/Soft Soils
 - Accommodate with special design/construction/ monitoring
 - Ground improvement

Risks and Opportunities cont.

• Seismic

- Liquefaction
- Lateral Spread
- Seismic Stability / Bearing Capacity
- Ground Improvement

ATMS and ETC

David Jones | ATMS ETC Design Lead

ATMS and ETC

- Maintain existing ATMS systems and/or replace with temporary devices
- All ATMS/ITS, traffic signals and ETC systems must be fully compatible with existing TOC software systems
- Requirements relative to coordination between the DB and the ETC Contractor will be issued in addenda

ATMS and ETC

- Special provisions to expand and/or clarify UDOT ATMS Standards and ATMS Typical Drawings will be issued by addenda
- All ATMS/ITS devices and equipment will be State furnished
- All ETC devices and equipment will be ETC Contractor furnished

Aesthetics and Landscaping

Brian Elrod | Context Sensitive Solutions Lead

Context and Vision

UDOT Standard

Interchange (North Payson)

UDOT Standard

Interchange (American Fork 500 E)

Interchange (Orem 800 N) Stormwater Detention Pond (American Fork 500 E) Roadside

Corridor Baseline vs. Enhancement

Corridor baseline

- Contractual
- Paid by UDOT
- Applies to all new elements

Enhancement

- Participation is up to each city
- Cities will have \$100K allowance per reconstructed interchange
- Additional enhancement will be paid by the cities
- Cities will decide the enhancement of their choice by July
- Decisions will be part of the agreements and included in addendum

Typical Crossover Bridge – Baseline

Corridor Baseline:

- Vinyl coated chain link fence
- Cobra head light and pole on bridge
- Formliner pattern on walls and piers
- Paint on walls, piers, and girders
- Erosion control grasses
- Textured barrier
- Standard sidewalk

Typical Crossover Bridge - Enhancement

Enhancement Opportunities:

- Ornamental fence
- Rockscape

Enhancement Opportunities:

- Ornamental fence
- Pedestrian light
- Ornamental landscape with irrigation
- Enhanced sidewalk

Typical Local Underpass – Baseline

Typical Local Underpass - Enhancement

Enhancement Opportunities:

• Rockscape

Enhancement Opportunities:

- Pedestrian light
- Ornamental landscape with irrigation
- Enhanced sidewalk

Piers at Overcrossing – Corridor Baseline

Corridor Baseline:

• Cobra head light and pole on bridge

• Formliner pattern on walls and piers

- Paint on walls, piers, and girders
- Textured barrier
- Standard sidewalk

Piers at Undercrossing

Corridor Baseline:

- Formliner pattern on walls and piers
- Paint on walls, piers, and girders
- Textured barrier

Abutment Walls at Overcrossing

Enhancement Opportunities:

- Ornamental fence
- Pedestrian light
- Enhanced sidewalk

Abutment Walls at Overcrossing without Interchange

Corridor Baseline:

- Formliner pattern on walls and piers
- Paint on walls, piers, and girders
- Textured barrier

Abutment Walls at Undercrossing

Corridor Baseline:

- Formliner pattern on walls and piers
- Paint on walls, piers, and girders
- Textured barrier

I-15 MAINLANE ABUTMENT -DEPARTURE SIDE ELEVATION SCALE: 1" = 10'-0"

I-15 MAINLANE ABUTMENT -APPROACH SIDE ELEVATION

Noise Walls

Corridor Baseline:

- Custom formliner pattern on corridor side noise wall
- Paint on noise wall

TEXTURE "A"

TEXTURE "B" SCALE: NO SCALE

TEXTURE DESIGN

The taxture design relates to the texture of the retaining walls and is abstract pattern designed to evoke landform,geology,flowing water, cloud formations etc. The Intent is to develop 3 panels (maximum) to have a continuous visual flow between panels and help break the reptition in long runs of walls. This texture is a layered approach and is a repetitive pattern developed on a grid.

General Notes: 1.Refer to UDOT Standard Dwgs. SW 2,SW 3A-B, 4A-C, SW 5, SW6

Noise Walls

Corridor Baseline:

- Standard formliner pattern on community side noise wall
- Paint on noise wall

Retaining Walls

Corridor Baseline:

- Custom formliner pattern on corridor side and community side retaining wall
- Paint on retaining wall

COPING DETAIL-SECTION
SCALE: 122-1-0*

Pedestrian Fencing – Corridor Baseline

TRANSITION FENCE FULL HEIGHT FENCE

Barriers

Mainline Roadway Lighting

Pedestrian Lighting

Corridor Baseline

Enhancement

Paving - Sidewalk

Corridor Baseline

CORRIDOR STANDARD PAVING PATTERN - TYPICAL PLAN

PAVING PATTERN OPTION 1 - TYPICAL PLAN

PAVING PATTERN OPTION 2 - TYPICAL PLAN

Enhancement

Landscape – Plant Material

Corridor Baseline

Enhancement

Landscape – Overcrossing Interchange

Corridor Baseline

Landscape – Undercrossing Interchange

Corridor Baseline

Colors

Base Color Applications:

- Barriers (Median, Roadside)
- · Retaining Walls and Cap
- Noise Walls
- Abutment Walls and Coping
- Paving (Sidewalks)
- Piers

Accent Color Applications:

- Retaining Wall Undulating Fins
- Noise Wall Cap and Post
- Abutment Wall Undulating Fins
- Bridge Girders (all visible sides)
- Piers Undulating Fins

Metal Work Color Applications:

- Roadway Lighting at Overcrossings and Undercrossings
- Under Bridge Lighting
- Pedestrian Lighting
- Pedestrian Fencing
- Signal Light Structures

Public Involvement

Dave Smith | Communications Director

Utah County Residents, August 2008 Survey

Public Confidence Ratings

Utah County Residents, August 2008 Survey

- 55% Traffic congestion at/near the top of concerns
- 75% I-15 is more congested than 2-3 years ago
- 76% Important to widen I-15 in Utah County
- 65% Important to replace aging infrastructure
- 56% Reconstruction inconvenience will last 1–3 yrs
- 28% Reconstruction inconvenience will last 4–5 yrs

Public Involvement Division of Responsibilities

Department PI Team	Design-Builder	Shared
Oversight	Designate a POC	Kick off meeting
Status, schedule updates to public (web, email)	Provide information	Participate in events
Crisis communications execution	Provide emergency response contact list	Crisis communication plan
Communication with public	Maintain constituent issues, complaints log	
Media communications	Respond to issues and complaints at UDOT request	
Communications strategy		
PI plan development		
Research/surveys		
Messaging		
Branding		
Web site		
Hotline, email		

Concurrent UDOT Projects

Shane Marshall | Region 3 Engineering Manager

Concurrent Projects

Project	Begin Construction	End Construction
Pioneer Crossing	Winter 2008	Fall 2010
2100 North	Summer 2009	Fall 2010
SR-92	Spring 2009	Fall 2010
SR-77	Spring 2008	Fall 2009
Geneva Road: 400 South	Summer 2009	Late 2010
Geneva Road: Corridor	Fall 2010	Fall 2011

Shane Marshall
Region Three Program Manager
801-222-3606
smarshall@utah.gov

Questions and Answers

Afternoon Schedule

Welcome - Dal Hawks

Ground Rules – David Downs

Utilities Presentation – Rod Brocious and Kevin Francis

Third Parties Introductions – Rod Brocious

Questions and Answers – David Downs

Ground Rules for Questions

- 1. The Final RFP rules
- 2. No questions relative to procurement or the RFP during presentation
- 3. Follow the communication protocol for technical or informational questions

Third Parties

Rod Brocius | Utilities Engineer Kevin Francis | Utilities Engineer

Utility Coordination

- Design-Build (DB) Teams designate a "Utility Coordinator"
 - Utility Coordinator the principal contact for all related
 Project utilities activities
 - Utility Coordinator to direct utility questions to Utility
 Owner and return answers to the DB-Team
 - UDOT has authorized payment to the Utility Owner for two-hours of coordination

Subsurface Utility Engineering (SUE)

- Quality Level A
 - Information gathered through test hole locations (horizontal and vertical location within 0.5 ft)
- Quality Level B
 - Information gathered by using geophysical techniques (horizontal accuracy within 2 ft)
- Quality Level C
 - Information gathered from surveying visible above ground facilities
- Quality Level D
 - Information gathered solely from existing utility records

Utility Sheet

Informational Documents – Utility Information Sheet (UIS)

FOR INFORMATION ONLY	FOR INFORMATION I-15 CORE UTILITY DATABASI				
	1) 974-8050 1) 259-7073	UtilityID: bte Sheet No.: 208 Owner Type: Priv Located in: Mu	ate		
Existing Conditions:					
General Location: Crossing I-15 at 820 N	Alignment Us	ed: I-15			
	Offset: 126 Offset: 692	L/R: Left L/R: Left			
3. UtilityType: Buried Telephone UtilitySize: 900	pair M	aterial: Copper Cable			
4. SUE Quality Level B Test Hole? ✓ Test Hole No.(s): 5. Utility Description: Telecommunication 6. Encased? Casing Size: Mater 7. Remarks:	148, 151	Depth To Top	o*: 3.37 feet		
This section completed by:		_ Date:			
2. Proposed Utility Action: 3. Proposed Stationing: Beginning Station: Ending Station:	Offset: L/R: Offset: L/R: Date:				
		_ Dutc			
Resolution Conditions: 1. Design Responsibility: 2. Design Specification:	Design Review Time: week		weeks		
Procurement Responsibility: Construction Responsibility:	Procurement Lead Time: Construction Notification Time:		weeks		
		struction Time:	weeks		
5. Inspection Responsibility:		Inspection Notification Time:			
6. Can utility be shut down? Shut down instructions: 7. Utility must remain in service during:					
This section completed by:		Date:			
Final Decision:					
Final Utility Action: Explanation:					
2. Final Stationing: Beginning Station: Offs Ending Station: Offs		L/R: L/R:			
This section completed by:		Date:			

* - Average depth where found in test holes

Thursday, June 04, 2009 Page 5 of 17

Engineering Data Part 6 – Test Hole Sheet

Informational Documents – Manhole Sheet

Informational Documents – Storm Drain Inlet Sheet

Utility Information Database

- Microsoft Access
- Repository for all utility information
 - Owner and contact
 - Location and general conditions
 - Utility type, size, material, description, etc.
 - SUE quality level
 - Conflict and resolution
 - Test hole, manhole, catch basin summary information
- Basis for utility matrix and UIS
- Reports
- Development of Utility Management System (UMS)
 - GIS application based on Utility Information Database

Utility Database Summary Sheet

in	н	C	0	U	N	1	Υ	
					. 1	7		
٠,	51	-	L	٠,	и	ь		
۰١	Œ	3	г	₹	П	L		
	_	0.5						

I-15 CORE UTILITY DATABASE UTILITY MATRIX

City	Sheet Number	Utility ID Number	Utility Owner	Utility Type	SUE QL	Test Hole?	Size	Units	Utility Description	Carrier Material	Conflict?	Nature of Conflict	Encased? Casing Units Size	Casing Material	Risk
Provo	208	wtr-2-6-004	Provo City	Culinary Water	В	V	16	inch	Piped	Ductile Iron	V	Fill			High
Provo	208	wtr-2-6-005	Provo City	Culinary Water	D				Piped	Ductile Iron					
Provo	208	wtr-2-6-007	Provo City	Culinary Water	D		8	inch	Piped	Ductile Iron					
Provo	208	swr-2-6-003	Provo City	Sanitary Sewer	В		12	inch	Piped	PVC					
Provo	208	mh-2-6-003	Provo City	Manhole	В		12	inch	Sanitary Sewer Manhole	PVC					71-12-1003-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Provo	208	mh-2-6-004	Provo City	Manhole	D				Sanitary Sewer Manhole	PVC					_ =====================================
Provo	208	mh-2-6-005	Provo City	Manhole	В				Sanitary Sewer Manhole	PVC					
Provo	208	btel-2-16-004	Qwest Local Network	Buried Telephone	В		900	pair	Telecommunication	Copper Cable	V	Roadway shift at pedest	al 🗌		High
Provo	208	btel-2-16-005	Qwest Local Network	Buried Telephone	В	•	900	pair	Telecommunication	Copper Cable	V	Roadway shift at pedest	al 🗆		High
Provo	208	btel-2-16-006	Qwest Local Network	Buried Telephone	В		50	pair	Telecommunication	Copper Cable	V	Roadway shift at pedestal location			
Provo	208	duct-2-16-001	Qwest Local Network	Duct Bank	В	•	4	inch	3-PVC-4.0"	PVC	V	Fill			High
Provo	208	duct-2-16-002	Qwest Local Network	Duct Bank	В		4	inch	2-PVC-4.0"	PVC					High
Provo	208	bfo-2-16-001	Qwest Local Network	Buried Fiber Optic	В		24	count	Telecommunication	Fiber Optic Cable					High
Provo	208	bfo-2-16-002	Qwest Local Network	Buried Fiber Optic	В	•	24	count	Telecommunication	Fiber Optic Cable				***************************************	High
Provo	208	sd-2-23-004	UDOT Region 3	Storm Drain	В		12	inch	Culvert	RCP					
Provo	208	sd-2-23-005	UDOT Region 3	Storm Drain	В		12	inch	Culvert	RCP					
Provo	208	cb-2-23-002	UDOT Region 3	Catch Basin	D										
Provo	208	cb-2-23-003	UDOT Region 3	Catch Basin	В										
Provo	208	cb-2-23-004	UDOT Region 3	Catch Basin	D										
Provo	208	cb-2-23-005	UDOT Region 3	Catch Basin	В										

Thursday, June 04, 2009

Master Utility Agreements (MUA)

- Defines working arrangement between Design-Builder, Utility Owner, and the Department
- Lists responsible individuals for each party
 - Design Responsibility
 - Material Procurement Responsibility
 - Construction Responsibility
 - Inspection Responsibility
- Identify storm drain discharge rates in agreements
- Defines financial responsibilities for each party
- Explains use of Supplemental Agreements
 - Defines scope, schedule and cost for each relocation
- Establishes Betterments

Current Status of MUA

- Municipal Agreements
 - Received Attorney General (AG) approval
 - Ready for distribution to individual municipalities
- High Profile Utilities
 - Questar Gas Company
 - High Pressure Currently being reviewed by Owner
 - Intermediate High Pressure Negotiating working arrangements
 - Rocky Mountain Power
 - Transmission Draft agreement in progress
 - Distribution Draft agreement in progress
 - Qwest
 - Received AG approval
 - Ready for distribution to Owner

MUA Status cont.

- Telecommunication Agreements
 - Received AG approval
 - Ready for distribution to Owners
- Irrigation Company Agreements
 - Received AG approval
 - Ready for distribution to Owners

What will be provided in the RFP

- Utility sheets
- Test hole sheets
- Manhole sheets
- Utility matrix summary sheets
- Utility information sheets
- Master Utility Agreements
 - Supplemental agreement sample
 - Betterment agreement
 - Betterment list
- Utility contacts and allocation of responsibilities

Repeating Agenda

- Introduction of third-party representative
- Discussion by third-party
- Request for DB point of contact

Third Party Attendees

- Union Pacific Railroad
- Utah Transit Authority
- Questar
- Rocky Mountain Power
- Qwest
- Corridor cities: American Fork, Pleasant Grove, Lindon, Orem, Provo

Union Pacific Railroad

Michael Seely

Railroad Information

RR Line	Location	Trains/ Day	Avg. Speed
UPRR Provo Subdivision	"S" Curves, Provo Center Street	15	40 mph
UPRR Provo Industrial Lead	Geneva Road	3 to 4	15 mph
UTA FrontRunner South (2012)	"S" Curves, Provo Center Street	68	79 mph (max)

Clearance and Easements

- Temporary Clearances: 12 ft Horizontal, 21 ft Vertical
- Permanent Clearances
 - Freight Rail: 25 ft Horizontal, 23 ft 6 in Vertical
 - Passenger Rail: 25 ft Horizontal, 14 ft Vertical
- Temporary haul roads on railroad property
- Early coordination
- Signal Line adjustments
- Easements and ROW

Track Time Availability

- Form "B" availability on UTA lines once in service will be extremely limited
- UTA work windows may be limited to 1 to 4 am
- Contractor Orientation REQUIRED prior to entering railroad property.
- Flagmen or other track safety measures
 - Required at all times
 - Availability is limited for both railroads (especially UTA)
- Coordination with both UTA and UPRR will be key to obtaining track time.

Railroad Contact Information

Jim Marshall

Manager, Special Projects,

Public & Private

Union Pacific Railroad

280 South 400 West, Suite 236

Salt Lake City, UT 84101

P. 801-212-2783

F. 402-233-3066

E. jmarshal@up.com

Steve Meyer, P.E.

Manager of Engineering and

Construction, Commuter

Rail

Utah Transit Authority

669 West 200 South

Salt Lake City, UT 84101

P. 801-236-4700

E. smeyer@rideuta.com

For More Information:

Phone:

1-888-i15core (1-888-415-2673)

Email:

i15core@utah.gov

Website:

www.i15core.utah.gov

